Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study
نویسندگان
چکیده
This article discusses how computational intelligence techniques are applied to fuse spectral images into a higher level image of land cover distribution for remote sensing, specifically for satellite image classification. We compare a fuzzy-inference method with two other computational intelligence methods, decision trees and neural networks, using a case study of land cover classification from satellite images. Further, an unsupervised approach based on k-means clustering has been also taken into consideration for comparison. The fuzzy-inference method includes training the classifier with a fuzzy-fusion technique and then performing land cover classification using reinforcement aggregation operators. To assess the robustness of the four methods, a comparative study including three years of land cover maps for the district of Mandimba, Niassa province, Mozambique, was undertaken. Our results show that the fuzzy-fusion method performs similarly to decision trees, achieving reliable classifications; neural networks suffer from overfitting; while k-means clustering constitutes a promising technique to identify land cover types from unknown areas.
منابع مشابه
Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier
Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملSpecial Issue on Fuzzy Logic for Image Processing
The increasing availability of huge image collections in different application fields, such as medical diagnosis, remote sensing, transmission and encoding, machine/robot vision, and video processing, microscopic imaging has pressed the need, in the last few last years, for the development of efficient techniques capable of managing and processing large collection of image data. In particular, ...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملA Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers ...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information
دوره 8 شماره
صفحات -
تاریخ انتشار 2017